| Song | Such a ship |
| Artist | DR1N0 |
| Album | Such a ship |
| Download | Image LRC TXT |
| 作词 : 无 | |
| 作曲 : DR1N0 | |
| Here are some important definitions. | |
| 这些是定义。 | |
| Displacement: | |
| 位移: | |
| R=Re^jθ | |
| All particles of a body move in parallel planes and travel by same distance is known as linear displacement. | |
| 物体所有粒子在平行的平面内移动相同距离称为线位移。 | |
| A body rotating about a fixed point in such a way that all particles move in circular path is known as angular displacement. | |
| 物体和它所有的粒子绕固定点沿圆周路径移动称为角位移。 | |
| If we take the first order derivative of the displacement equation, we get: | |
| 位移方程对时间求一阶导数得: | |
| d/dt(Re^jθ)=R'e^jθ+Re^(jθ)jθ'=R'e^jθ+Rθ'je^jθ | |
| The angular velocity | |
| 角速度 | |
| w=dθ/dt. | |
| The linear velocity | |
| 线速度 | |
| v=dR/dt. | |
| Acceleration, the rate of change of velocity. | |
| 加速度是速度的变化率。 | |
| Now we take the second order derivative of the displacement equation, we get: | |
| 位移方程对时间求二阶导数得: | |
| d^2/dt^2(Re^jθ)=R''e^jθ+R'θ'je^(jθ)+(Rθ''+R'θ')je^jθ+Rθ'je^(jθ)jθ'=R''e^jθ+2θ'R'je^jθ+θ''Rje^jθ-R(θ'^2)e^jθ | |
| The angular acceleration | |
| 角加速度 | |
| α=θ''=dw/dt | |
| The linear acceleration | |
| 线加速度 | |
| a=R''=dv/dt | |
| Here's a simple case. | |
| 举个栗子。 |
| zuo ci : wu | |
| zuo qu : DR1N0 | |
| Here are some important definitions. | |
| zhei xie shi ding yi. | |
| Displacement: | |
| wei yi: | |
| R Re j | |
| All particles of a body move in parallel planes and travel by same distance is known as linear displacement. | |
| wu ti suo you li zi zai ping xing de ping mian nei yi dong xiang tong ju li cheng wei xian wei yi. | |
| A body rotating about a fixed point in such a way that all particles move in circular path is known as angular displacement. | |
| wu ti he ta suo you de li zi rao gu ding dian yan yuan zhou lu jing yi dong cheng wei jiao wei yi. | |
| If we take the first order derivative of the displacement equation, we get: | |
| wei yi fang cheng dui shi jian qiu yi jie dao shu de: | |
| d dt Re j R' e j Re j j' R' e j R' je j | |
| The angular velocity | |
| jiao su du | |
| w d dt. | |
| The linear velocity | |
| xian su du | |
| v dR dt. | |
| Acceleration, the rate of change of velocity. | |
| jia su du shi su du de bian hua lv. | |
| Now we take the second order derivative of the displacement equation, we get: | |
| wei yi fang cheng dui shi jian qiu er jie dao shu de: | |
| d 2 dt 2 Re j R'' e j R'' je j R'' R'' je j R' je j j' R'' e j 2' R' je j'' Rje j R' 2 e j | |
| The angular acceleration | |
| jiao jia su du | |
| '' dw dt | |
| The linear acceleration | |
| xian jia su du | |
| a R'' dv dt | |
| Here' s a simple case. | |
| ju ge li zi. |
| zuò cí : wú | |
| zuò qǔ : DR1N0 | |
| Here are some important definitions. | |
| zhèi xiē shì dìng yì. | |
| Displacement: | |
| wèi yí: | |
| R Re j | |
| All particles of a body move in parallel planes and travel by same distance is known as linear displacement. | |
| wù tǐ suǒ yǒu lì zǐ zài píng xíng de píng miàn nèi yí dòng xiāng tóng jù lí chēng wéi xiàn wèi yí. | |
| A body rotating about a fixed point in such a way that all particles move in circular path is known as angular displacement. | |
| wù tǐ hé tā suǒ yǒu de lì zǐ rào gù dìng diǎn yán yuán zhōu lù jìng yí dòng chēng wéi jiǎo wèi yí. | |
| If we take the first order derivative of the displacement equation, we get: | |
| wèi yí fāng chéng duì shí jiān qiú yī jiē dǎo shù dé: | |
| d dt Re j R' e j Re j j' R' e j R' je j | |
| The angular velocity | |
| jiǎo sù dù | |
| w d dt. | |
| The linear velocity | |
| xiàn sù dù | |
| v dR dt. | |
| Acceleration, the rate of change of velocity. | |
| jiā sù dù shì sù dù de biàn huà lǜ. | |
| Now we take the second order derivative of the displacement equation, we get: | |
| wèi yí fāng chéng duì shí jiān qiú èr jiē dǎo shù dé: | |
| d 2 dt 2 Re j R'' e j R'' je j R'' R'' je j R' je j j' R'' e j 2' R' je j'' Rje j R' 2 e j | |
| The angular acceleration | |
| jiǎo jiā sù dù | |
| '' dw dt | |
| The linear acceleration | |
| xiàn jiā sù dù | |
| a R'' dv dt | |
| Here' s a simple case. | |
| jǔ gè lì zi. |